Demixed Principal Component Analysis
نویسندگان
چکیده
In many experiments, the data points collected live in high-dimensional observation spaces, yet can be assigned a set of labels or parameters. In electrophysiological recordings, for instance, the responses of populations of neurons generally depend on mixtures of experimentally controlled parameters. The heterogeneity and diversity of these parameter dependencies can make visualization and interpretation of such data extremely difficult. Standard dimensionality reduction techniques such as principal component analysis (PCA) can provide a succinct and complete description of the data, but the description is constructed independent of the relevant task variables and is often hard to interpret. Here, we start with the assumption that a particularly informative description is one that reveals the dependency of the high-dimensional data on the individual parameters. We show how to modify the loss function of PCA so that the principal components seek to capture both the maximum amount of variance about the data, while also depending on a minimum number of parameters. We call this method demixed principal component analysis (dPCA) as the principal components here segregate the parameter dependencies. We phrase the problem as a probabilistic graphical model, and present a fast Expectation-Maximization (EM) algorithm. We demonstrate the use of this algorithm for electrophysiological data and show that it serves to demix the parameter-dependence of a neural population response.
منابع مشابه
Demixed principal component analysis of neural population data
Neurons in higher cortical areas, such as the prefrontal cortex, are often tuned to a variety of sensory and motor variables, and are therefore said to display mixed selectivity. This complexity of single neuron responses can obscure what information these areas represent and how it is represented. Here we demonstrate the advantages of a new dimensionality reduction technique, demixed principal...
متن کاملDemixed principal component analysis of population activity in higher cortical areas reveals independent representation of task parameters
Neurons in higher cortical areas, such as the prefrontal cortex, are known to be tuned to a variety of sensory and motor variables. The resulting diversity of neural tuning often obscures the represented information. Here we introduce a novel dimensionality reduction technique, demixed principal component analysis (dPCA), which automatically discovers and highlights the essential features in co...
متن کاملPrincipal component analysis or factor analysis different wording or methodological fault?
This article has no abstract.
متن کاملDevelopment of a cell formation heuristic by considering realistic data using principal component analysis and Taguchi’s method
Over the last four decades of research, numerous cell formation algorithms have been developed and tested, still this research remains of interest to this day. Appropriate manufacturing cells formation is the first step in designing a cellular manufacturing system. In cellular manufacturing, consideration to manufacturing flexibility and productionrelated data is vital for cell formation....
متن کاملFeature reduction of hyperspectral images: Discriminant analysis and the first principal component
When the number of training samples is limited, feature reduction plays an important role in classification of hyperspectral images. In this paper, we propose a supervised feature extraction method based on discriminant analysis (DA) which uses the first principal component (PC1) to weight the scatter matrices. The proposed method, called DA-PC1, copes with the small sample size problem and has...
متن کامل